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ABSTRACT
Motivation: An important application of microarray technology is to
discover important genes and pathways that are correlated with cli-
nical outcomes such as disease status and survival. While a typical
microarray experiment surveys gene expressions on a global scale,
there may be only a small number of genes that have significant influ-
ence on a clinical outcome of interest. In addition, expression data
have cluster structures and the genes within a cluster have coordi-
nated influence on the response, but the effects of individual genes
in the same cluster may be different. Accordingly, we seek to build
statistical models with the following properties. First, the model is
sparse in the sense that only a subset of the parameter vector is
non-zero. Second, the cluster structures of covariates (genes) are
properly accounted for.
Results: For microarray studies with smooth objective functions and
well defined cluster structure for genes, we propose a clustering
threshold gradient descent regularization (CTGDR) method, for simul-
taneous cluster selection and within cluster gene selection. We apply
this method to regression models for binary classification and censo-
red survival data with microarray gene expression data as covariates,
assuming known cluster structures of gene expressions. Compa-
red to the standard TGDR and other regularization methods, the
CTGDR takes into account the cluster structure and carries out fea-
ture selection at both the cluster level and within-cluster gene level.
We demonstrate the CTGDR on two studies of cancer classifica-
tion using microarray data and two studies of correlating survival of
lymphoma patients with microarray data.
Availability: Research R code is available upon request from the
authors.
Contact: shuangge@u.washington.edu or jian@stat.uiowa.edu

1 INTRODUCTION
Microarray technology provides a way of monitoring gene expres-
sions on a large scale. Tremendous efforts have been devoted to
discover genes and pathways that are accountable for variations of
clinical outcomes. An understanding of the molecular biology that
underlies such variations might provide a more accurate method of
diagnosis and might suggest new therapeutic approaches, see for
example, Alizadeh et al. (2000), Garber et al. (2001), and Rosen-
wald et al. (2003), among others. Two types of clinical outcomes
have been of special interest. The first type is categorical outcome,
which includes the presence or absence of tumor as in Alon et al.
(1999) or different types of tumors as in Alizadeh et al. (2000). The
second type is survival outcome, which usually corresponds to the
occurrence time of certain event such as cancer. See for example
Rosenwald et al. (2003) and Dave et al. (2004).

Classification and survival analysis using microarray data are
challenging due to the large number of genes and relatively small
sample size in a typical study. Various model reduction or variable
selection methods have been proposed, including the singular value
decomposition (Golub and Van Loan 1996), partial least squares
(Nguyen and Rocke 2002), principal component analysis (Ma et al.
2006), LASSO-LARS (Gui and Li 2005a), and threshold gradient
descent regularization (TGDR, Gui and Li 2005b; Ma and Huang
2005) among others. The essence of the aforementioned regulari-
zation techniques is to identify a small number of representative
features–individual genes or linear combinations of genes, and build
predictive models based on those representative features. In the fea-
ture selection stage, all genes are treated equally and the intrinsic
gene structures are usually ignored.

It has been demonstrated that cluster structure exists in gene
expression data (Eisen et al. 1998), and the clusters based on expres-
sion data tend to correspond to certain gene pathways (Clare and
King 2002; Tavazoie et al. 1999; Yeung et al. 2001). Cluster analysis
methods have been employed in gene expression studies as a dimen-
sion reduction tool (Alizadeh et al. 2000; Dave et al. 2004). With
this approach, a small number of clusters based on gene expres-
sion data are first constructed, using methods such as the k-mean
or hierarchical method (Johnson and Wichern 2002). The means of
the expressions of genes within the same clusters are then computed
and used as covariates for downstream model building. A limita-
tion of this approach is that feature selection is carried out only
at the cluster level. Once a cluster is used in the final model, all
genes within that cluster are included. Although genes within the
same cluster may have similar functions, it is not necessarily true
they will all be associated with a specific clinical outcome. Inclu-
ding “noisy” genes may lead to ill-behaved models. Gene selection
within clusters is still of interest to yield more interpretable models.
Wei and Li (2006) proposed a nonparametric pathway-based regres-
sion approach for genomic data that explicitly make use of available
pathway information in their model. They used the gradient-based
boosting algorithm (GDB, Friedman 2001) for model fitting and the
importance score (Breiman et al. 1984; Friedman 2001) for ran-
king pathways and genes. However, they did not explicitly consider
variable selection at either the cluster or individual gene levels.

Regularization methods such as the LASSO and TGDR can be
used for variable selection. Although capable of selecting a small
number of important genes, these methods do not incorporate clu-
ster structure. On the other hand, standard model fitting approaches
using cluster analysis results as input explicitly take into account
cluster structure, but cannot carry out individual gene selection.
To combine the strength of the aforementioned approaches, we
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propose a clustering TGDR (CTGDR) method that incorporates clu-
ster structure into TGDR-based variable selection. The proposed
CTGDR carries out feature selection at two levels: at the cluster
level and the individual gene level in each cluster. When there
exist well defined gene clusters, the CTGDR is capable of selecting
important clusters and genes within clusters simultaneously. Thus it
takes advantages of both the cluster-based and regularized variable
selection methods.

The rest of this paper is organized as follows. In section 2, we
present the data and models we consider. We use logistic regression
for binary classification and Cox model for right censored survival
analysis as examples. The CTGDR algorithm is described in section
3. Tuning parameter selection and evaluation are also discussed. We
present two classification examples in section 4 and two survival
analysis examples in section 5. The article ends with a discussion
in section 6. Part of the data analysis results are presented in the
Supplementary Data.

2 DATA AND MODEL SETTINGS
Let Z be a length d vector of gene expressions, and let Y be the
clinical outcome of interest. We assume that Y is associated with Z
through a parametric or semiparametric model Y ∼ φ(β′Z) with
a regression function φ and unknown regression coefficient β. In
addition, we assume there exists a smooth objective function and a
proper estimate of β can be obtained by maximizing that function.
In regularized estimation, gene selection is achieved if some com-
ponents of β are estimated to be exactly zero. We are particularly
interested in the classification and survival analysis problems using
microarray gene expression data as covariates due to their extensive
applications in medical studies.

For the classification problems, Y is the categorical variable
indicating the disease status. For simplicity, we focus on binary
classification only. Suppose that Y = 1 denotes the presence and
Y = 0 indicates the absence of disease. We assume the commonly
used logistic regression model, where the logit of the conditio-
nal probability is logit(P (Y = 1|Z)) = α + β′Z, where β
is the length d vector of unknown regression coefficient and α is
the unknown intercept. Based on a sample of n iid observations
Xi = (Yi, Zi), i = 1, . . . , n, the maximum likelihood estimator is
defined as (α̂, β̂) = argmaxα,βRn(α, β), where

Rn(α, β) =

nX
i=1

Yi log

�
exp(α + β′Zi)

1 + exp(α + β′Zi)

�
+ (1)

(1− Yi) log

�
1

1 + exp(α + β′Zi)

�
.

We are mainly interested in the estimation of β. The intercept α will
always be kept in the model. For simplicity, we denote Rn(α, β) as
Rn(β).

For right censored survival data, Y = (T, ∆), where T =
min(U, V ) and ∆ = I(U ≤ V ). Here U and V denote the
event time of interest and the censoring time, respectively. The most
widely used model for censored data is the Cox proportional hazards
model (Cox, 1972) which assumes that conditional hazard func-
tion λ(u|Z) = λ0(u) exp(β′Z), where λ0 is the unknown baseline
function and β is the regression coefficient. Based on a sample of n
iid observations Xi = (Yi, Zi), i = 1, . . . , n, the maximum partial

likelihood estimator is defined as the value β̂ that maximizes

Rn(β) =

nY
i=1

(
exp(Z′iβ)P

j∈ri
exp(Z′jβ)

)δi

,

where ri = {j : Tj ≥ Ti} is the risk set at time Ti.
In the above examples, the objective functions Rn are smooth

and depend only on data and the unknown regression coefficient β.
Assume there are L well defined clusters associated with the gene
expressions, and gene j = 1, . . . , d belongs to one of the clusters
C(j) ∈ {1, . . . , L}. The clusters can be defined based on biological
functions or statistical associations or both. We also allow overlap
between different clusters. We assume that the clusters have been
defined a priori.

3 CLUSTERING TGDR
The CTGDR can be consider a generalization of the TGDR, which
is introduced by Friedman and Popescu (2004) in the context of
linear regression analysis and has been employed in microarray
studies by Gui and Li (2005b) and Ma and Huang (2005). For
completeness of this paper, we first briefly review the TGDR
algorithm.

3.1 TGDR algorithm
Denote ∆ν as the small positive increment as in ordinary gradient
descent methods (Friedman and Popescu 2004). In the implemen-
tation of this algorithm, we choose ∆ν = 1 × 10−4. Denote
νk = k × ∆ν as the index for the point along the parameter path
after k steps. Let β(νk) denote the parameter estimate correspon-
ding to the index νk. For any fixed threshold value 0 ≤ τ ≤ 1, the
TGDR algorithm consists of the following iterative steps:

1. Initialize β(0) = 0 and ν0 = 0.

2. For the current estimate β, compute the negative gradient
g(ν) = −∂Rn(β)/∂β. Denote the jth component of g(ν)
as gj(ν). If maxj{|gj(ν)|} = 0, stop the iterations.

3. Compute the threshold vector f(ν) of length d, where the jth

component of f(ν): fj(ν) = I{|gj(ν)| ≥ τ ×maxl |gl(ν)|}.
4. Update β(ν +∆ν) = β(ν)−∆ν× g(ν)× f(ν) and update ν

by ν + ∆ν, where the product of f and g is component-wise.

5. Steps 2–4 are repeated k times. The number of iterations k is
determined by cross validation as described below.

The tuning parameters τ and k jointly determine the property of
β. When τ ≈ 0, β is dense even for small values of k. When τ ≈ 1,
β is sparse for small k and remains so for a relatively large num-
ber of iterations, but will become dense eventually. At the extreme
when τ = 1, the TGDR usually increases in the direction of a
single covariate in each iteration. This mimics the incremental for-
ward stage-wise strategy in Hastie, Tibshirani and Friedman (2001).
When τ is in the middle range, the characteristics of β are between
those for τ = 0 and τ = 1. For τ 6= 0, variable selection can
be achieved with cross validated, finite k, by having certain com-
ponents of β exactly zero. We refer to Friedman and Popescu (2004)
for more detailed discussions.

3.2 CTGDR method
The TGDR described above is capable of individual gene selection
but not accounting for the cluster structures. We now describe the
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proposed CTGDR algorithm, starting with a simple modification of
the TGDR.

3.2.1 Naive CTGDR
Naive CTGDR Algorithm I. This algorithm modifies step 3 of

the TGDR as follows:

f1
j (ν) = I

8
<
:

X

m∈C(j)

|gm(ν)| ≥ τ1 ×max
C(k)

X

l∈C(k)

|gl(ν)|
9
=
; , (2)

where 0 ≤ τ1 ≤ 1 is the threshold tuning parameter. The other steps
in the TGDR are kept unchanged.

Compared to the original TGDR, algorithm I uses “cluster gradi-
ents” to replace the individual gradients. The combined effects of
genes in the same clusters are considered and compared with the
combined effects of other clusters. This algorithm is similar to the
traditional clustering based approaches in the sense that gene selec-
tion is achieved on a cluster basis, and if the combined effect of
genes in a cluster is important, then all the genes within this cluster
will be included in the final model (Dave et al. 2004). The key dif-
ference is that the naive CTGDR I estimated coefficients of genes in
the same clusters may be different. So genes within the same clu-
sters still have different contributions in the final model, whereas
in traditional cluster based methods, all genes within the same clu-
sters have the same coefficient and hence equal contributions to the
outcome.

Algorithm I does feature selection at the cluster level. If a cluster
is selected, then all the genes in this cluster will be included. The
total number of genes in the final model can be large. Consider for
an example a hypothetical study with 2000 genes and five clusters
of equal sizes are constructed. Then using algorithm I, it is possible
three or four clusters are selected. The total number of genes in
the final model will be greater than 1000. Although the prediction
performance may still be satisfactory, this makes the final estimation
results hard to interpret from a gene discovery point of view. Since it
is often the case that only a subset of genes within each cluster have
important impact on the outcome of interest, gene selection within
cluster is still needed.

Naive CTGDR Algorithm II. This algorithm partly solves the
drawbacks of algorithm I. Denote τ2 ∈ [0, 1] as the threshold tuning
parameter. We replace f in step 3 of the TGDR with

f2
j (ν) = I

�
|gj(ν)| ≥ τ2 × max

l∈C(j)
|gl(ν)|

�
, (3)

so that each gene is compared with other genes within the same
cluster and only important genes from each cluster are selected. The
rationale is that genes from different clusters/pathways may not be
directly comparable. So a fair comparison will be for genes within
the same clusters. Within each cluster, we use the TGDR to identify
important genes.

We have employed algorithm II to the examples in sections 4 and
5. We were able to identify a smaller number of genes (∼200, much
fewer than that from naive algorithm I) with satisfactory prediction
performance. However, algorithm II has it own drawbacks. It is
roughly equivalent to carrying out the TGDR in each cluster sepa-
rately and the final model includes genes selected from all clusters.
The underlying assumption is that all clusters are associated with the
outcome of interest. Previous cluster based methods as in Dave et al.
(2004) and Alizadeh et al. (2000) show that this is not necessarily
true. Cluster selection may still be necessary.

3.2.2 CTGDR algorithm The naive CTGDR algorithm I carries
out cluster selection, but does not select important genes within each
cluster. On the other hand, the naive CTGDR algorithm II does gene
selection in each cluster separately, but does not select clusters. The
advantages and drawbacks of the naive CTGDR algorithms motivate
the following CTGDR algorithm.

Let τ1, τ2 ∈ [0, 1] be two threshold parameters. In step 3 of the
TGDR algorithm, define

fj(ν) = f1
j (ν)× f2

j (ν), (4)

where f1(ν) is defined in (2) with threshold value τ1 and f2(ν) is
defined in (3) with threshold value τ2, respectively.

In (4), the term f1(ν) carries out cluster selection, while f2(ν)
carries out within-cluster gene selection. So the combined f can
carry out feature selection at both the cluster level and within clu-
ster level. Further flexibility is introduced by allowing two possibly
different threshold values. In this algorithm, if a gene or a cluster
is known to be associated with the clinical outcome a priori, then it
can be excluded from the thresholding step.

The three tuning parameters k, τ1 and τ2 jointly determine the
properties of the CTGDR estimates, as can be seen from numerical
studies in sections 4 and 5 (see Tables 1 and 2). Roughly speaking,
the tuning parameters τ1 and τ2 have similar effects as the tuning
parameter τ for the standard TGDR in section 3.1. If τ1 and τ2 are
both close to 1, then the estimate remains sparse for a relatively large
k, but will become dense eventually. If τ1 and τ2 are both close to
0, the estimate is dense for even a very small k. τ1 and τ2 deter-
mine the degree of sparsity on cluster level and within cluster level,
respectively, with larger thresholding values leading to more parsi-
monious models with fixed k. With nonzero τ1 and τ2, the model
with small to moderate k usually has a small number of clusters and
a small number of genes within each selected cluster.

3.2.3 Possible extensions In the above CTGDR algorithm, the
cluster gradient is simply defined as the sum of absolute values
of individual gradients. This is the default definition when there is
no extra information on the clusters. If there exists external know-
ledge of the relative importance of clusters, then we can modify the
indicator function in (2) as

I

8
<
:wj

X

m∈C(j)

|gm(ν)| ≥ τ1 ×max
C(k)

wk

X

l∈C(k)

|gl(ν)|
9
=
; , (5)

where wjs are positive weights measuring the relative importance of
cluster j. A simple choice of wj is the inverse of cluster size, so that
the relative importance of clusters is not affected by cluster size.
Choosing different weights has considerable impact on the cluster
selection results. If external knowledge about the relative import-
ance of genes within the same cluster is present, then the cluster
gradient can be defined as the weighted sum of individual gradients,
with more stable and more important genes having larger weights.
Further flexibility is introduced by considering weighted gradients.
We leave study of the weighted scheme to a future article.

3.3 Tuning parameter selection
We select the tuning parameters k and (τ1, τ2), which jointly
determine the characteristics of the estimator, using the following
two-step approach.
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First we choose the tuning parameter k for any fixed (τ1, τ2) using
V -fold cross validation (Wahba 1990) as follows. Partition the data
randomly into V non-overlapping subsets of equal sizes. Choose k
to maximize the cross-validated objective function

CV (k) =

VX
v=1

h
Rn(β(−v))−R(−v)

n (β(−v))
i
, (6)

where β(−v) is the CTGDR estimate of β based on the data without
the vth subset for a fixed k and R

(−v)
n is the objective function Rn

evaluated without the vth subset.
After cross validation over k, model features for different τ1 and

τ2 can be obtained as for example shown in Tables 1 and 2. We
choose parsimonious models with relatively large CV score. An AIC
type score as in Huang et al. (2005) can be used as model selection
criterion. Cross validation over τ1 and τ2 can also be considered,
i.e, we can select the model with the largest CV score over all pos-
sible k, τ1 and τ2. However, this approach may lead to models with
slightly larger CV scores, but a lot more genes, which correspond
to unstable models. Beyond selecting the model (corresponding to
the cross validated tuning parameters) with the best predictive per-
formance, V -fold cross validation also provides partial protection
against overfitting (Nguyen and Rocke 2002).

3.4 Evaluation
Unlike in standard classification or survival analysis where the
association between clinical outcome and covariates is of primary
interest, studies given in sections 4 and 5 put more emphasis on
variable selection and prediction based on selected genes. So we
consider the following cross validation based approach for eva-
luating prediction performance, as suggested by Ma and Huang
(2005).

1. We first partition the data randomly into a training set of size
n1 and a testing set of size n2 with n1 +n2 = n. In this article,
we set n1 ∼ 2/3n.

2. Compute the CTGDR estimate based on the training set only.
Using this training set estimate, we compute a prediction index
for the testing set.

3. To take into account the possibility of an extreme prediction
performance due to a rare partition, we repeat this process B
(for example 1000) times. Each time a new partition is made
and the prediction index is computed.

For classification studies, the prediction index can be the pre-
diction error or the prediction AUC from a ROC analysis (Ma and
Huang 2005). For censored survival studies, we first create two risk
groups based on dichotomizing the estimated linear risk scores β̂′Zi

at the median risk score for the testing set. Note that we can define
multiple risk groups based on the quantiles of the linear risk scores.
We then use the logrank statistic to test whether the survival cur-
ves of the different risk groups are different. A large value of the
logrank statistic indicates that the high and low risk groups are well
separated, and suggests satisfactory prediction performance of the
CTGDR estimate.

For censored survival analysis, we also consider model fitting eva-
luation based on the time-dependent ROC, which was proposed by
Heagerty et al. (2000) in the context of the medical diagnosis and

Table 1. Colon and Estrogen data. Model features for different tuning
parameters. variable: number of selected genes; cluster: number of
selected clusters.

Colon Estrogen
τ1 τ2 CV variable cluster CV variable cluster
1.0 1.0 -24.4 16 5 -17.6 18 5

0.9 -24.6 30 5 -16.9 24 5
0.8 -25.3 34 4 -16.3 39 5
0.7 -25.5 76 6 -15.2 58 5

0.9 1.0 -24.7 16 5 -16.7 18 6
0.9 -26.2 35 6 -16.2 28 6
0.8 -26.9 49 7 -15.0 47 6
0.7 -27.9 85 6 -13.5 85 9

has been used as criteria for censored data regression with microar-
ray gene expression data (Gui and Li 2005b). The essential idea is
to treat the event indicator as binary outcome for each time point
and evaluate the classification performance at each time using the
standard ROC technique. In the ROC approach, the AUC can be
used as the evaluation/comparison criteria and a larger AUC at time
u indicates better predictability of the survival outcome at time u as
measured by sensitivity and specificity.

4 BINARY CLASSIFICATION EXAMPLES
Colon data. In this dataset, expression levels of 40 tumor and
22 normal colon tissues for 6500 human genes are measured
using the Affymetrix gene chips. A selection of 2000 genes with
the highest minimal intensity across the samples has been made
by Alon et al. (1999), and these data are publicly available
at http://microarray.princeton.edu/oncology/. The colon data have
been analyzed in several previous studies using other statistical
approaches, see for example Dettling and Buhlmann (2003), Pochet
et al. (2004), Ben-Dor et al. (2000), Nguyen and Rocke (2002) and
Ma and Huang (2005).

Estrogen data. This dataset was first presented by West et al.
(2001) and Spang et al. (2001). It includes expression values of
7129 genes of 49 breast tumor samples. The expression data were
obtained using the Affymetrix gene chip technology and are availa-
ble at http://mgm.duke.edu/genome/dna micro/work/. The response
describes the response of the estrogen receptor (ER). Among the
49 samples, 25 are positive (ER+) and 24 are negative (ER−). We
threshold the raw data with a floor of 100 and a ceiling of 16000.
Genes with max(expression)/ min(expression) < 10 and/or
max(expression) − min(expression) < 1000 are also exclu-
ded (Dudoit et al. 2002). 3332 (46.7%) genes pass the first step
screening. A base 2 logarithmic transformation is then applied. The
estrogen data have also been studied by Dettling and Buhlmann
(2003) and Ma and Huang (2005).

Although there is no limitation on the number of genes that
can be used in the CTGDR, we first identify 500 genes for each
dataset based on marginal significance to gain further stability as
in Ma and Huang (2005). Compute the sample standard errors
of the d biomarkers se(1), . . . , se(d) and denote their median as
med.se. Compute the adjusted standard errors as 0.5(se(1) +
med.se), . . . , 0.5(se(d) + med.se). Then the genes are ranked
based on the t-statistics computed with the adjusted standard errors.
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The 500 genes with the largest absolute values of the adjusted t-
statistics are used for classification. The adjusted t-statistic is similar
to a simple shrinkage method discussed in Cui et al. (2005). For
each of these two datasets, we constructed 25 clusters based on gene
expressions using the k-mean approach. The cluster sizes are not
exactly equal but comparable. Details of the cluster structures are
available from the authors.

We apply the CTGDR to the clustered data obtained above. We
consider the tuning parameters τ1 and τ2 taking values in the grid 0,
0.1,..., 1.0. Partial model features for different thresholding values
and cross validated k are shown in Table 1. For the colon data, the
model with τ1 = 1.0 and τ2 = 1.0 is identified as the final model.
For the estrogen data, the final model has τ1 = 0.9 and τ2 = 1.0.
16 and 18 genes are identified, respectively, representing 5 and 6
clusters. The estimated coefficients and gene description for the final
models are given in the Supplementary Data.

We evaluate the prediction performance of the CTGDR using the
approach discussed in section 3.4. Based on 1000 partitions, the
prediction errors for the testing sets have means 0.12 (0.07) and
0.09 (0.07), respectively, where the numbers in “()” are the stan-
dard errors. For the colon data, the CTGDR provides a similar
prediction as the SMRC in Ma and Huang (2005, mean classifica-
tion error 0.14), and better performance than boosting (Dettling and
Buhlmann 2003, mean classification error: LogitBoost 0.16; Ada-
Boost 0.18), classification tree (Dettling and Buhlmann 2003, mean
classification error 0.15) and SVM (Pochet, et al. 2004, mean classi-
fication error 0.18). For the estrogen data, the CTGDR still provides
a satisfactory prediction. However, it is less optimal than the SMRC
in Ma and Huang (2005, mean classification error 0.06) and boo-
sting in Dettling and Buhlmann (2003, mean classification error:
LogisBoost 0.04; AdaBoost 0.04).

5 SURVIVAL ANALYSIS EXAMPLES
Follicular Lymphoma data. Follicular lymphoma is the second
most common form of non-Hodgkin’s lymphoma, accounting for
about 22 percent of all cases. A study was conducted to deter-
mine whether the survival probability of patients with follicular
lymphoma can be predicted by the gene-expression profiles of the
tumors at diagnosis (Dave et al. 2004). Fresh-frozen tumor-biopsy
specimens and clinical data from 191 untreated patients who had
received a diagnosis of follicular lymphoma between 1974 and 2001
were obtained. The median age at diagnosis was 51 years (range 23
to 81), and the median follow up time was 6.6 years (range less
than 1.0 to 28.2). The median follow up time among patients alive
at last follow up was 8.1 years. Eight records with missing survival
information are excluded from the downstream analysis. Detailed
experimental protocol can be found in Dave et al. (2004).

Affymetrix U133A and U133B microarray genechips were used
to measure gene expression levels from RNA samples. A log2 trans-
formation was applied to the Affymetrix measurements. We first
filter the 44928 gene measurements with the following criteria: (1)
the max expression value of each gene across 191 samples must
be greater than 9.186 (the median of the maximums of all probes).
(2) the max-min should be greater than 3.874 (the median of the
max-min of all probes). (3) Compute correlation coefficients of the
uncensored survival times with gene expressions. Select the genes
whose correlation with survival time is greater than 0.2. There are

Table 2. Follicular and MCL data. Model features for different tuning
parameters. variable: number of selected genes; cluster: number of
selected clusters.

Follicular MCL
τ1 τ2 CV variable cluster CV variable cluster
1.0 1.0 -182.5 129 6 -83.4 106 9

0.9 -183.4 149 6 -83.2 141 7
0.8 -182.2 180 6 -83.7 170 4
0.7 -181.5 268 10 -83.1 238 5

0.9 1.0 -178.6 127 7 -83.7 113 10
0.9 -180.5 169 9 -83.5 143 10
0.8 -180.5 202 10 -83.9 201 12
0.7 -180.0 239 9 -83.5 392 12

729 genes that pass this screening process. We normalize genes
across samples to have mean 0 and variance 1.

Mantel Cell Lymphoma data. Rosenwald et al. (2003) repor-
ted a study using microarray expression analysis of mantle cell
lymphoma (MCL). The primary goal of this study was to disco-
ver genes that have good predictive power of patient’s survival risk.
Among 101 untreated patients with no history of previous lym-
phoma included in this study, 92 were classified as having MCL,
based on established morphologic and immunophenotypic criteria.
Survival times of 64 patients were available and other 28 patients
were censored. The median survival time was 2.8 years (range
0.02 to 14.05 years). Lymphochip DNA microarrays (Alizadeh et
al., 2000) were used to quantify mRNA expression in the lym-
phoma samples from the 92 patients. The gene expression data that
contains expression values of 8810 cDNA elements is available at
http://llmpp.nih.gov/MCL.

We pre-process the data as follows to exclude noises and gain
further stability: (1) Compute the variances of all gene expressi-
ons; (2) Compute correlation coefficients of the uncensored survival
times with gene expressions; and (3) Select the genes with varian-
ces larger than the first quartile and with correlation coefficients
larger than 0.2. 1451 out of 8810 genes (16.5%) pass the above
initial screening. We standardize these genes to have zero mean and
unit variance. We follow previously suggested first stage screening
methods. So they are slightly different for the two datasets.

For each dataset, we obtain 20 clusters using the k-mean method,
following a protocol similar to that in Dave et al. (2004). Clu-
ster structures are available upon request. We employ the proposed
CTGDR and partial model features for different threshold values are
shown in Table 2. Using the two-step approach proposed in section
3.3, we identify the models with (τ1, τ2) = (0.9, 1.0) for Follicular
Lymphoma data and (1.0, 1.0) for MCL data, respectively. Detailed
descriptions of the genes appeared in the final model are provided
in the Supplementary Data.

We use the approaches discussed in section 3.4 for evaluation and
comparison. For comparison, we consider estimates obtained using
Dave’s approach and the standard TGDR method. With the TGDR,
the models with τ = 1.0 are selected for both models. However,
they only have 42 (Follicular) and 28 (MCL) genes. To make a fair
comparison, we also consider the TGDR models with τ = 0.55
(Follicular) and τ = 0.80 (MCL), which have 123 and 93 genes,
respectively–much closer to those for the CTGDR.
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Fig. 1. Follicular lymphoma (upper panels) and MCL data (lower panels).
Plot of time-dependent AUCs (left panels) and the kernel density estimates
of the logrank statistics (right panels).

We show in Figure 1 the time-dependent ROC plot and the ker-
nel density estimation of the logrank statistics. We can see that the
CTGDR has dominating AUCs, which suggest better model fitting
for both datasets. We note that the AUCs for the CTGDR are very
close or equal to 1. This is partly caused by the relatively large
number of genes identified. The logrank statistics for the Follicular
data have means 4.502 (CTGDR), 3.836 (TGDR, τ = 1.0), 2.258
(TGDR, τ = 0.55) and 1.081 (Dave’s). We compare the CTGDR
logrank statistics with those from other approaches using the Wil-
coxin tests. For the Follicular Lymphoma data, we obtain p-values
< 0.001 for TGDR and Dave’s approach, which suggests signifi-
cantly better prediction performance of the CTGDR. For the MCL
data, the logrank statistics have means 12.142 (CTGDR), 9.764
(TGDR, τ = 1.0), 9.101 (TGDR, τ = 0.8) and 5.131 (Dave’s).
The corresponding p-values from Wilcoxin tests are < 0.001.

6 DISCUSSIONS
The proposed CTGDR approach carries out variable selection at
the cluster and individual gene levels simultaneously, and directly
accounts for cluster structure in microarray gene expression data.
This algorithm is quite flexible in that it can use any clustering
results as input in the analysis. The CTGDR is different from
the existing variable selection methods applied to microarray data
which focus on feature selection at the individual gene level. We
used logistic regression for classification and Cox model for sur-
vival data as examples to illustrate the application of the CTGDR.
However, the CTGDR algorithm does not depend on the actual form
of the objective function, as long as it is well defined and differen-
tiable. So the CTGDR can be used in survival analysis with other
models such as the accelerated failure time and additive hazards
models, and classification analysis based other objective functions
such as the SVM hinge loss and the ROC objective function.

We have demonstrated the proposed approach on four publicly
available datasets. In these examples, we constructed the clusters
based on the expression data. Co-expressed genes in the same clu-
ster are likely to be involved in the same cellular processes, so
a strong correlation of expression patterns between those genes
indicates co-regulation. However, gene clusters obtained based on
expression data may not completely overlap with functional groups
and pathways. If there is external information on the pathways
to which the genes under study belong, such external information
should be used to form clusters. In most applications, it is proba-
bly the case that only partial external information are available, i.e.,
some genes are known to belong to certain pathways, but for most
genes such information are not available. In this case, a simple solu-
tion is to use the expression data to cluster the genes without the
external pathway information. Since the CTGDR can use any cluste-
ring result as input in the model fitting, we can incorporate existing
biological information into the analysis. Indeed, incorporating exi-
sting pathway information should improve the variable selection and
prediction performance. We note that the CTGDR does not require
that there is no overlap in gene clusters. Thus it is applicable to
the situation when some genes play a role in multiple functional
pathways.

We have only considered classification and survival models in
which the outcome variable depends on a simple linear combina-
tion of the gene expression data. The CTGDR is applicable to more
complicated models which may include nonparametric and nonli-
near components. It is also applicable to models with interaction at
both the cluster and individual gene levels. Such models would pro-
bably be more realistic from a biological standpoint. However, it is
important not to make the models overly complex given the limited
amount of data in a typical study. We plan to consider such issues in
future studies.
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